The role of hydrogen during Pt-Ga nanocatalyst formation.

نویسندگان

  • Matthias Filez
  • Evgeniy A Redekop
  • Vladimir V Galvita
  • Hilde Poelman
  • Maria Meledina
  • Stuart Turner
  • Gustaaf Van Tendeloo
  • Alexis T Bell
  • Guy B Marin
چکیده

Hydrogen plays an essential role during the in situ assembly of tailored catalytic materials, and serves as key ingredient in multifarious chemical reactions promoted by these catalysts. Despite intensive debate for several decades, the existence and nature of hydrogen-involved mechanisms - such as hydrogen-spillover, surface migration - have not been unambiguously proven and elucidated up to date. Here, Pt-Ga alloy formation is used as a probe reaction to study the behavior and atomic transport of H and Ga, starting from Pt nanoparticles on hydrotalcite-derived Mg(Ga)(Al)Ox supports. In situ XANES spectroscopy, time-resolved TAP kinetic experiments, HAADF-STEM imaging and EDX mapping are combined to probe Pt, Ga and H in a series of H2 reduction experiments up to 650 °C. Mg(Ga)(Al)Ox by itself dissociates hydrogen, but these dissociated hydrogen species do not induce significant reduction of Ga(3+) cations in the support. Only in the presence of Pt, partial reduction of Ga(3+) into Ga(δ+) is observed, suggesting that different reaction mechanisms dominate for Pt- and Mg(Ga)(Al)Ox-dissociated hydrogen species. This partial reduction of Ga(3+) is made possible by Pt-dissociated H species which spillover onto non-reducible Mg(Al)Ox or partially reducible Mg(Ga)(Al)Ox and undergo long-range transport over the support surface. Moderately mobile Ga(δ+)Ox migrates towards Pt clusters, where Ga(δ+) is only fully reduced to Ga(0) on condition of immediate stabilization inside Pt-Ga alloyed nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of atomic hydrogen with monometallic Au(100), Cu(100), Pt(100) surfaces and surface of bimetallic Au@Cu(100), Au@Pt(100) overlayer systems: The role of magnetism

The spin-polarized calculations in generalized gradient approximation density–functional theory (GGA–DFT) have been used to show how the existence of second metals can modify the atomic hydrogen adsorption on Au (100), Cu (100), and Pt (100) surfaces. The computed adsorption energies for the atomic hydrogen adsorbed at the surface coverage of 0.125 ML (monolayer) for the monometallic Au (100), ...

متن کامل

Platinum-oxygen Bond Formation: Kinetic and Mechanistic Studies

Reaction of [PtMe(C^N)(SMe2)] (C^N = 2-phenylpyridinate (ppy); 1a, C^N = benzo[h]quinolate, (bhq); 1b) with hydrogen peroxide gives the platinum(IV) complexes trans-[PtMe(OH)2(C^N)(H2O)] (C^N = ppy; 3a, C^N = bhq, 3b) bearing platinum-oxygen bonds. The Pt(II) complexes 1a and 1b have 5dπ(Pt)→π*(C^N) MLCT band in the visible region which is used to easily follow the kinetic of its reaction with ...

متن کامل

Rapid H2O2-promoted oxidation of anazolene sodium over the [BMIM]PF=/Pt/γ-Al2O3 nanocatalyst

Highly meso-porous Pt contained γ-Al2O3 nanostructure was prepared by a combined sol gel-pyrolysis method in the presence of polyvinylpyrrolidone and Pluronic p123 as surfactant. The surface of the prepared nanostructure was decorated with 1-Butyl-3-methylimidazolium hexafluorophosphate ([BMM]PF6) ionic liquid to enhance the sorption capacity and prevent the poisoning of the catalytic active si...

متن کامل

Enhanced Catalytic Activity of Pt-NdFeO3 Nanoparticles Supported on Polyaniline-Chitosan Composite Towards Methanol Electro-Oxidation Reaction

In this work, NdFeO3 nanoparticles were synthesized through a simple co-precipitation method. The formation of NdFeO3 particles was verified by X-ray powder diffraction, infrared spectroscopy, vibrating sample magnetometer, and transmission electron microscopy analysis. Polyaniline and chitosan were employed as proper support for production of metal nanoparticles. Novel Pt...

متن کامل

Size-dependent Kinetics Determination of MoS2-K2O/CNTS Nanocatalyst in the Synthesis of Alcohols from Syngas

The influence of Mo particle size on the catalytic activity and product selectivity of alkalized MoS2 nanocatalysts has been investigated. Nanocatalysts are prepared using a microemulsion technique with water-to-surfactant ratios of 1-12. Three different techniques, including XRD, TEM, and hydrogen chemisorption were used to determine the molybdenum average particle size and their activity and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 4  شماره 

صفحات  -

تاریخ انتشار 2016